1質点系の運動方程式とその解

内容

1. 1質点系の運動方程式とその解
2. 1質点系の自由振動
3. 構造物のモデル化
4. 減衰自由振動

剛体と構造物（弾性体）

剛体
変位しても形が変わらない（変形しない）

構造物
変位すると形が変わる（変形する）
力と変形の関係が比例する（Hookの法則が成り立つ）時、これを______と呼ぶ
1質点系（1自由度系）モデル

質点
物体の重心に全質量が集まっているとし、重心の位置・運動によって物体の位置・運動を代表させる。ここでは、水平方向の運動 \(u (m) \) のみ考える。

質点はばね \(k \) (N/m) を介して固定端に結ばれている。このばねは、物体の変形しやすさを表し、Hookの法則に従う。

運動方程式

D'Lembertの原理:
\[-ma + P = 0\]
ここに、\(-ma\)は慣性力、\(P\)は外力これより
\[-m\ddot{u} - ku = 0\]
\[\rightarrow m\ddot{u} + ku = 0\]

運動方程式の解 (1)
両辺を\(m\)で割って
\[\ddot{u} + \omega^2 u = 0\]
ここに
\[\omega = \sqrt{\frac{k}{m}} \left[\frac{N/m}{kg} \right] = \sqrt{\frac{kg \cdot m/s^2}{kg}} = \left[\frac{1}{s} \right]\]
上の方程式は、
2階の同次線形常微分方程式と呼ばれる。
同次: 右辺（定数項）がない
線形: 変数が2次以上でない
・2つの「1次独立」な解を持つ
・一般解はその1次結合で表される

運動方程式の解 (2)
1次独立な解は
\[u_1 = \cos \omega t, \quad u_2 = \sin \omega t\]
一般解は
\[u = A \cos \omega t + B \sin \omega t\]
上式を微分すると、速度・加速度は
\[\dot{u} = -A \omega \sin \omega t + B \omega \cos \omega t\]
\[\ddot{u} = -A \omega^2 \cos \omega t - B \omega^2 \sin \omega t\]
ここに、\(A, B\)は積分定数（未定係数）と言う。
この値は \(t = 0\) における初期条件（\(u_{t=0}, \dot{u}_{t=0}\)）により定まる。
初期条件(1)

初期条件①
\[u_{t=0} = u_0, \dot{u}_{t=0} = 0 \]
（質点に変位 \(u_0 \) を与え, \(t = 0 \) で放した場合）
前ページの式より, 未定積分定数 \(A, B \) は
\[A = u_0, \quad B = 0 \]
したがって, 運動方程式の解は,

\[u = u_0 \cos \omega t + \frac{\dot{u}_0}{\omega} \sin \omega t \]

初期条件(2)

初期条件②
\[u_{t=0} = u_0, \dot{u}_{t=0} = \dot{u}_0 \]
（質点に変位 \(u_0 \) を与え, その状態で初速 \(\dot{u}_0 \)で
もって投げ出した場合）
未定積分定数 \(A, B \) は
\[A = u_0, \quad B\bar{\omega} = \dot{u}_0 \]
従って, 運動方程式の解は,
\[u = u_0 \cos \bar{\omega} t + \frac{\dot{u}_0}{\bar{\omega}} \sin \bar{\omega} t \]

整理すると

\[U = \sqrt{u_0^2 + \left(\frac{\dot{u}_0}{\bar{\omega}}\right)^2}, \quad \phi = \tan^{-1}\left(-\frac{\dot{u}_0}{\bar{\omega}u_0}\right) \]

1質点系の自由振動

\[u = U \cos(\bar{\omega} t + \phi) \]
\[U = \sqrt{u_0^2 + \left(\frac{\dot{u}_0}{\bar{\omega}}\right)^2}, \quad \phi = \tan^{-1}\left(-\frac{\dot{u}_0}{\bar{\omega}u_0}\right) \]

で表される運動を1質点系の自由振動という。
\(u_0 \) は時刻 \(t = 0 \) における縦軸の値, \(\dot{u}_0 \) はその点における接線の傾きを表す。
振幅と位相

運動方程式の解を再記すると,

\[u = U \cos(\bar{\omega}t + \phi) \]

\[U = \sqrt{u_0^2 + (\dot{u}_0 / \bar{\omega})^2}, \quad \phi = \tan^{-1}(-\dot{u}_0 / \bar{\omega}u_0) \]

ここで, \(U \) を振幅, \(\bar{\omega}t + \phi \) を位相という。

\(\bar{\omega} \) は位相速度, \(\phi \) は位相ずれ（位相差）という。

固有値

固有円振動数、固有周期、固有振動数間の関係

\[\bar{T} = \frac{2\pi}{\bar{\omega}} = \frac{2\pi}{\omega} \sqrt{\frac{m}{k}} \quad [s] \]

\[\bar{f} = \frac{\omega}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{k}{m}} \quad [Hz] \]

\[\bar{\omega} = \frac{2\pi}{\bar{T}} = \bar{\omega} = \sqrt{\frac{k}{m}} \quad [rad/s] \]

固有振動数と固有周期

位相速度 \(\bar{\omega} \) を固有円振動数ともいう。
（単振動において, 1秒あたり何ラジアン回転するか）

今, \(u = U \cos(\bar{\omega}t + \phi) \) において, \(t \to t + 2\pi / \bar{\omega} \) すると

\[\cos(\bar{\omega}t + \phi) \to \cos(\bar{\omega}(t + 2\pi / \bar{\omega}) + \phi) \]

\[= \cos(\bar{\omega}t + \phi + 2\pi) \]

\[= \cos(\bar{\omega}t + \phi) \]

したがって, 時間 \(2\pi / \bar{\omega} \) 後に同じ値が現れる。

\[\bar{T} = 2\pi / \bar{\omega} \quad \text{その時間間隔（単位: s）} \]

\[\bar{f} = 1/\bar{T} \quad \text{同一位相が単位時間に何回現れるか（単位: Hz）} \]
構造物のモデル化

片持梁（Cantilever）

構造物が梁とその先端に取り付いた質量からなっている場合

質量 \(m = 30 \text{ t} \)

\[
E = 206 \text{ GPa} = 206 \times 10^9 \text{ N/m}^2
\]

\(I = 0.001 \text{ m}^4 \)

梁の剛性を \(EI \) とすると

\[
k = \frac{P}{\delta} = \frac{3EI}{h^2}
\]

\(E = 206 \text{ GPa} = 206 \times 10^9 \text{ N/m}^2 \)

\(I = 0.001 \text{ m}^4 \)

片持梁の変形の公式より、

剛性 \(k = \frac{3EI}{h^2} = 4.94 \times 10^6 \text{ N/m} \)

両端固定梁

建物が柱と剛な梁からなっている場合

\(m = 30 \text{ t} \)

\[
I = \frac{ab^3}{12} = \frac{0.5 \times 0.5^3}{12} = 0.00521 \text{ m}^4
\]

\[
k = \frac{12EI}{h^4} = \frac{12 \times 20.6 \times 10^9 \times 0.00521}{4} = 2.01 \times 10^7 \text{ N/m}
\]

2本あるので、

\(k = 4.02 \times 10^7 \text{ N/m} \)

\[
T = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{30 \times 1000}{4.02 \times 10^7}} = 0.17 \text{ s}
\]

フレーム（柱・梁）構造

柱・梁からなるフレーム構造をラーメン構造という。構造力学の固定法やたわみ角法などを用いると、力・変位関係が計算できる。

柱: 0.5 x 0.5 m

コンクリート: \(E_c = 20.6 \text{ GPa} \)

柔な梁: 0.3 x 0.6 m

\(h = 4 \text{ m} \)

分布荷重

固定法を使うと、\(\delta = 1 \text{ m} \)に対して、\(P = 30.6 \text{ MN} \)となる

従って、

\[
k = \frac{P}{\delta} = 30.6 \text{ MN/m}
\]

\[
T = 2\pi \sqrt{\frac{30 \times 1000}{30.6 \times 10^7}} = 0.20 \text{ s}
\]

構造が「柔らかく」なると固有周期が「伸びる」
減衰自由振動

減衰自由振動

時刻 $t = 0$ において変位と速度の初期条件を与えた時の1質点系の振動を、自由振動という。
現実には、時間とともに振幅が減少し、ある時間経過すると質点の運動は停止する。このような現象を、減衰と呼ぶ。

非減衰自由振動

減衰自由振動

減衰の要因

構造物における減衰の要因には次のようなものがある。
- 空気の抵抗
- 材料が持つ粘性
- 部材接合部などの摩擦
- 地盤へのエネルギーの逸散
- その他

ダッシュポット

速度に比例した抵抗を与える装置をダッシュポットという。
この比例係数を粘性減衰係数という。また、このような減衰を粘性減衰と呼ぶ。
粘性減衰により、減衰をかなりの程度まで説明できる。
1質点減衰モデル

ばねとダッシュポットによって支持される質点を1質点減衰モデルという。
質点の質量を\(m \), ばね定数を\(k \), 減衰係数を\(c \)で表す。

運動方程式の解 (1)

解を(4)式のように仮定し, (3)式に代入すると(5)式が得られる。
(5)式が成り立つためには(6)式が成り立つ必要がある。
(6)式を\(p_{1,2} = \pm \sqrt{-h\overline{\omega} \pm c^2} \)という。(6)式は\(p \)に関する2次方程式であり, (7)式に示す2つの解が存在する。

\[
\begin{align*}
\quad u &= De^{pt} \\
De^{pt} (p^2 + 2h\overline{\omega}p + \overline{\omega}^2) &= 0 \\
p^2 + 2h\overline{\omega}p + \overline{\omega}^2 &= 0 \\
p_{1,2} &= \pm \sqrt{-h\overline{\omega} \pm c^2}
\end{align*}
\]

運動方程式の解 (2)

従って, (3)式の一般解は

\[
u = D_1e^{pt} + D_2e^{ptl}
\]

ここに, \(D_1, D_2 \)は未定積分定数であり, 初期条件により定められる。
また, 上記(8)式で表される解は, パラメータ\(p \)に含まれる減衰定数\(h \)の値によって大きく異なる。

\[
p_{1,2} = -h\overline{\omega} \pm \overline{\omega}\sqrt{h^2 - 1}
\]
解の性質 (1) $h > 1$

ルートの中が正、すなわち h が 1 より大きい時、特性方程式の解は 2 つとも負の実数となる。したがって $t \to \infty$ の時 $e^{pt} \to 0$ となり、u は振動しない。この状態を過減衰という。

\[
\begin{align*}
p_1 &= -\omega \left(h - \sqrt{h^2 - 1} \right) \\
p_2 &= -\omega \left(h + \sqrt{h^2 - 1} \right) \\
p_2 &< p_1 < 0 \\
u &= D_1 e^{p_1 t} + D_2 e^{p_2 t} \\
u &\to 0 \therefore e^{pt} \to 0 (t \to \infty)
\end{align*}
\]

解の性質 (2) $h = 1$

$h = 1$ の時は、p_1, p_2 がともに $-\omega$ となる。つまり、この場合も p は負の実数であり、$t \to \infty$ の時 $u \to 0$ となる。すなわち、u は振動しない。この状態を臨界減衰という。

\[
\begin{align*}
p_1 &= p_2 = -\omega < 0 \\
u &= D_1 e^{p_1 t} + D_2 e^{p_2 t} \\
u_{t=0} &= u_0, \quad \dot{u}_{t=0} = \dot{u}_0 \\
u &= u_0 \left[1 + \left(1 + \frac{\dot{u}_0}{\omega u_0} \right) e^{-\omega t} \right] e^{-\omega t} \\
u &\to 0 (t \to \infty)
\end{align*}
\]

解の性質 (3) $h < 1$

ルートの中が負、すなわち h が 1 より小さい時、特性方程式の解は共役な 2 つの複素数となる。この時、解は sine または cosine 関数となる。すなわち、u は周期的に振動する関数となる。ただし、振幅は時間の経過とともに減少する。

\[
\begin{align*}
p_{1,2} &= -\omega \left(h \pm i\sqrt{1-h^2} \right) \\
u &= D_1 e^{p_{1,t}} + D_2 e^{p_{2,t}} \\
u &= e^{-\omega it} \left[A \cos \left(\sqrt{1-h^2} \omega t \right) + B \sin \left(\sqrt{1-h^2} \omega t \right) \right]
\end{align*}
\]
減衰自由振動

\[u = U \cos(\omega t + \phi) \]

を非減衰自由振動

\[u = U e^{-h\omega t} \cos(\omega t + \phi) \]

と比べると、減衰の付加による振幅・固有円振動数・固有周期の変化は

\[U \rightarrow U e^{-h\omega t} \]

\[\omega \rightarrow \sqrt{1-h^2\omega} = \omega_d \]

\[\frac{T}{T_d} = \frac{2\pi}{\omega_d} = \frac{\bar{T}}{\sqrt{1-h^2}} \]

減衰固有周期は、減衰定数 \(h \) が小さい時には非減衰固有周期にほぼ等しい値となる。

\(h \ll 1 \)

\[\frac{T}{T_d} = \frac{\bar{T}}{\sqrt{1-h^2}} \approx \bar{T} \]